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Abstract-Today’s world moving around cloud computing  
technology ,the cloud computing plays a major role in all 
organizations this is because of its property like 
computability, cost efficiency ,availability etc.. The cloud 
computing had more advantage however it also have some 
security defect, In the cloud server  detection of zombie 
exploration attacks is extremely difficult, due to this the cloud 
user can able to install harmful applications into their virtual 
server to attack the virtual server. 
In this paper we provide Reconfigurable virtual network 
approach by using Network Intrusion Detection and 
Countermeasure selection algorithm ,this algorithm prevent 
harmful attack of  virtual network system by the user .In this 
method, using attack analyzer we analyze the vulnerability of 
the application which is uploaded and downloaded by the 
cloud user if the application is harmful to the virtual network 
system the analyzer will restrict the application ,it works like 
bridge between the distributed virtual network system in 
order to significantly improve attack detection and mitigate 
attack consequences. The data efficiency and the security of 
the cloud computing is improved effectively. 
 

I.INTRODUCTION 
In Recent studies have shown that users migrating to the cloud 
consider security as the most important factor. A recent Cloud 
Security Alliance (CSA) survey shows using of cloud computing 
is considered as the top security threat, in which attackers can 
exploit vulnerabilities in clouds and utilize cloud system resources 
to attack it. In data centers, the system administrators have full 
control over the host system, defect  can be detected and rectified 
by the system administrator. However, rectifying known security 
holes in cloud server, where cloud users usually have the rights to 
control software installed on their managed VMs, may not work 
properly and can affects the Service Level Agreement (SLA). 
Furthermore, cloud users can install vulnerable software on their 
VMs, which leads to loopholes in security. The difficult is to 
establish an effective vulnerability/attack detection and response 
system for accurately identifying attacks and minimizing the 
impact of security breach to cloud users. In, M. Armbrust et al. 
addressed that protecting”Business continuity and services 
availability” from service outages is one of the top concerns in 
cloudComputing systems.  
In a cloud system where the infra structure is shared by potentially 
many users attacked by  use of the shared infrastructure benefits 
attackers to exploit vulnerabilities of the cloud and use its 
resource to deploy attacks in more efficient ways . Such attacks 
are more effective in the cloud environment since cloud users 
usually share computing resources, e.g., sharing the same data and 
file systems, even with attackers. The same setup for VMs in the 
cloud, e.g., virtualization method, VM OS, installed harmful 
software, networking, etc., attracts attackers to attack multiple 
VMs. In this article, we propose NICE (Network Intrusion 
detection and Counter measures Election in virtual network 
systems) to establish a defense-in-depth intrusion detection. For 

attack detection, NICE uses attack graph analytical procedures 
into the intrusion detection processes. NICE employs a 
reconfigurable virtual networking approach to detect and counter 
the attempts to attack VMs, that preventing zombie VMs. 
In general, NICE includes two main phases: (1) deploya 
lightweight mirroring-based network intrusion detection agent 
(NICE-A) on each cloud server to capture and analyze cloud 
traffic. A NICE-A repeatedly scans the virtual system 
vulnerabilities within a cloud server to establish Scenario Attack 
Graph (SAGs), and then based on the severity of identified 
vulnerability. (2) Once a VM enters inspection state, (DPI) Deep 
Packet Inspection is applied, virtual network reconfigurations can 
be deployed to the inspecting VM to make the potential attack 
behaviors prominent. 
 

II.PROPOSED SYSTEM 
In this article, we propose NICE (Network Intrusion detection and 
Countermeasure selection in virtual network systems) to establish 
a defense-in-depth intrusion detection framework. For better 
attack detection, NICE incorporates attack graph analytical 
procedures into the intrusion detection processes. We must note 
that the design of NICE does not intend to improve any of the 
existing intrusion detection algorithms; indeed, NICE employs a 
reconfigurable virtual networking approach to detect and counter 
the attempts to compromise VMs, thus preventing zombie VMs. 
 
Advantage of proposed system 
• The contributions of NICE are presented as follows: 
• We devise NICE, a new multi-phase distributed network 

intrusion detection and prevention framework in a virtual 
networking environment that captures and inspects 
suspicious cloud traffic without interrupting users’ 
applications and cloud services. 

• NICE incorporates a software switching solution to 
quarantine and inspect suspicious VMs for further 
investigation and protection. Through programmable 
network approaches, NICE can improve the attack detection 
probability and improve the resiliency to VM exploitation 
attack without interrupting existing normal cloud services. 

• NICE employs a novel attack graph approach for attack 
detection and prevention by correlating attack behavior and 
also suggests effective countermeasures. 

NICE optimizes the implementation on cloud servers to minimize 
resource consumption. Our study shows that NICE consumes less 
computational overhead compared to proxy-based network 
intrusion detection solutions. 
 

III.EXISTING SYSTEM 
Cloud users can install vulnerable software on their VMs, which 
essentially contributes to loopholes in cloud security. The 
challenge is to establish an effective vulnerability/attack detection 
and response system for accurately identifying attacks and 
minimizing the impact of security breach to cloud users. In a 
cloud system where the infrastructure is shared by potentially 
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millions of users, abuse and nefarious use of the shared 
infrastructure benefits attackers to exploit vulnerabilities of the 
cloud and use its resource to deploy attacks in more efficient 
ways. Such attacks are more effective in the cloud environment 
since cloud users usually share computing resources, e.g., being 
connected through the same switch, sharing with the same data 
storage and file systems, even with potential attackers. The similar 
setup for VMs in the cloud, e.g., virtualization techniques, VM 
OS, installed vulnerable software, networking, etc., attracts 
attackers to compromise multiple VMs. 
 
Disadvantage of exiting system: 
• No detection and prevention framework in a virtual 

networking environment. 
• Not accuracy in the attack detection from attackers. 
 

IV.SYSTEM MODULES 
Nice-A 
 The NICE-A is a Network-based Intrusion Detection 
System (NIDS) agent installed in each cloud server. It scans the 
traffic going through the bridges that control all the traffic among 
VMs and in/out from the physical cloud servers. It will sniff a 
mirroring port on each virtual bridge in the Open vSwitch. Each 
bridge forms an isolated subnet in the virtual network and 
connects to all related VMs. The traffic generated from the VMs 
on the mirrored software bridge will be mirrored to a specific port 
on a specific bridge using SPAN, RSPAN, or ERSPAN methods. 
It’s more efficient to scan the traffic in cloud server since all 
traffic in the cloud server needs go through it; however our design 
is independent to the installed VM. The false alarm rate could be 
reduced through our architecture design. 
VM Profiling 
Virtual machines in the cloud can be profiled to get precise 
information about their state, services running, open ports, etc. 
One major factor that counts towards a VM profile is its 
connectivity with other VMs. Also required is the knowledge of 
services running on a VM so as to verify the authenticity of alerts 
pertaining to that VM. An attacker can use port scanning program 
to perform an intense examination of the network to look for open 
ports on any VM. So information about any open ports on a VM 
and the history of opened ports plays a significant role in 
determining how vulnerable the VM is. All these factors 
combined will form the VM profile. VM profiles are maintained 
in a database and contain comprehensive information about 
vulnerabilities, alert and traffic. 
Attack Analyzer 
The major functions of NICE system are performed by attack 
analyzer, which includes procedures such as attack graph 
construction and update, alert correlation and countermeasure 
selection. The process of constructing and utilizing the Scenario 
Attack Graph (SAG) consists of three phases: information 
gathering, attack graph construction, and potential exploit path 
analysis. With this information, attack paths can be modeled using 
SAG. The Attack Analyzer also handles alert correlation and 
analysis operations. This component has two major functions: (1) 
constructs Alert Correlation Graph (ACG), (2) provides threat 
information and appropriate countermeasures to network 
controller for virtual network reconfiguration. NICE attack graph 
is constructed based on the following information: Cloud system 
information, Virtual network topology and configuration 
information, Vulnerability information 
Network Controller 
The network controller is a key component to support the 
programmable networking capability to realize the virtual network 
reconfiguration. In NICE, we integrated the control functions for 
both OVS and OFS into the network controller that allows the 
cloud system to set security/filtering rules in an integrated and 

comprehensive manner. The network controller is responsible for 
collecting network information of current Open Flow network and 
provides input to the attack analyzer to construct attack graphs. In 
NICE, the network control also consults with the attack analyzer 
for the flow access control by setting up the filtering rules on the 
corresponding OVS and OFS. Network controller is also 
responsible for applying the countermeasure from attack analyzer. 
Based on VM Security Index and severity of an alert, 
countermeasures are selected by NICE and executed by the 
network controller. 
 
Algorithm 1 Alert Correlation 
Require: alert ac, SAG, ACG 
1: if (ac is a new alert) then 
2: create node ac in ACG 
3: n1 ← vc∈map(ac) 
4: for all n2 ∈parent(n1) do 
5: create edge (n2.alert, ac) 
6: for all Si containing a do 
7: if a is the last element in Si then 
8: append ac to Si 
9: else 
10: create path Si+1 = {subset (Si, a), ac} 
11: end if 
12: end for 
13: add ac to n1.alert 
14: end for 
15: end if 
16: return S 
 

V.SYSTEM DESIGN 

 
In this section, we first present the system design overview of 
NICE and then detailed descriptions of its component The 
proposed NICE framework is illustrated in figure 1.It shows the 
NICE framework within one cloud server cluster. Major 
components in this framework are distributed and light-weighted 
NICE-A on each physical cloud server, a network controller, a 
VM profiling server, and an attack analyzer. The latter three 
components are located in a centralized control center connected 
to software switches on each cloud server (i.e., virtual switches 
built on one or multiple Linux software bridges). NICE is a 
software agent implemented in each cloud server connected to the 
control center through a dedicated and isolated secure channel, 
which is separated from the normal data packets using Open Flow 
tunneling or VLAN approaches. The network controller is 
responsible for deploying attack countermeasures based on 
decisions made by the attack analyzer. 
In the following description, our terminologies are based on the 
XEN virtualization technology. NICE-A is a network intrusion 
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detection engine that can be installed in either Dom0 or Dom U of 
a XEN cloud server to capture and filter malicious traffic. 
Intrusion detection alerts are sent to control center when 
suspicious or anomalous traffic is detected. After receiving an 
alert ,attack analyzer evaluates the severity of the alert based on 
the attack graph, decides what countermeasure strategies to take, 
and then initiates it through the network controller. An attack 
graph is established according to the vulnerability information 
derived from both offline and real time vulnerability scans. 
Offline scanning can be done by running penetration tests and 
online real time vulnerability scanning can be triggered by the 
network controller (e.g., when new ports are opened and identified 
by Open Flow switches) or when new alerts are generated by the 
NICE-A. Once new vulnerabilities are discovered or 
countermeasures are deployed, the attack graph will be 
reconstructed. Countermeasures are initiated by the attack 
analyzer based on the evaluation results from the cost-benefit 
analysis of the effectiveness of countermeasures. Then, the 
network controller initiates counter measure actions by 
reconfiguring virtual or physical Open Flow switches. 
 

VI.NICE SECURITY MEASUREMENT, ATTACK 

MITIGATION AND COUNTERMEASURES 
In this section, we present the methods for selectingthe 
countermeasures for a given attack scenario. When vulnerabilities 
are discovered or some VMs are identifiedas suspicious, several 
countermeasures can be taken to restrict attackers’ capabilities and 
it’s important todifferentiate between compromised and 
suspicious VMs. The countermeasure serves the purpose of 
1)protecting the target VMs from being compromised; 
and2)making attack behavior stand prominent so that the 
attackers’actions can be identified. 
Security Measurement Metrics 
The issue of security metrics has attracted much attention and 
there has been significant effort in the development of quantitative 
security metrics in recent years. Among different approaches, 
using attack graph as the security metric model for the evaluation 
of security risks [28] is a good choice. In order to assess the 
network security risk condition for the current network 
configuration, security metrics are needed in the attack graph to 
measure risk likelihood. After an attack graph is constructed, 
vulnerability information is included in the graph. For the initial 
node or external node (i.e., the root of the graph, NR ⊆ND), the 
priori probability is assigned on the likelihood of a threat source 
becoming active and the difficulty of the vulnerability to be 
exploited. We use GV to denote the priori risk probability for the 
root node of the graph and usually the value of GV is assigned to a 
high probability, e.g., from 0.7 to 1. 
For the internal exploitation node, each attack-step node e ∈NC 
will have a probability of vulnerability exploitation denoted as 
GM[e]. GM[e] is assigned according to the Base Score (BS) from 
CVSS (Common Vulnerability Scoring System). The base score 
as shown in (1) [24], is calculated by the impact and exploitability 
factor of the vulnerability. Base score can be directly obtained 
from National Vulnerability Database [26] by searching for the 
vulnerability CVE id.  
BS = (0.6 × IV + 0.4 × E − 1.5) × f(IV ), (1) where, 
IV = 10.41 × (1 − (1 − C) × (1 − I) × (1 − A)), 
E = 20 × AC × AU × AV,and 
f(IV ) = if IV = 0, 
 
1.176 otherwise. 
The impact value (IV ) is computed from three basicparameters of 
security namely confidentiality (C), integrity(I), and availability 
(A). The exploitability (E) score consists of access vector (AV ), 
access complexity (AC), and authentication instances (AU). The 
value of BS ranges from 0 to 10. In our attack graph, we assign 

each internal node with its BS value divided by 10, as shown in 
(2). 
GM[e] = Pr(e = T) = BS(e)/10, ∀e ∈NC. (2) 
In the attack graph, the relations between exploits can be 
disjunctive or conjunctive according to howthey are related 
through their dependency conditions [29]. Such relationships can 
be represented as conditionalprobability, where the risk 
probability of current node is determined by the relationship with 
its predecessors and their risk probabilities. We propose the 
following probability derivation relations: 
 
• for any attack-step node n ∈NC with immediate predecessors set 

W = parent(n), 
Pr(n|W) = GM[n] ×s∈W 
Pr(s|W); (3) 
 
• for any privilege node n ∈ND with immediate 
predecessors set W = parent(n), and then 
Pr(n|W) = 1 −s∈W 
(1 − Pr(s|W)). (4) 
Once conditional probabilities have been assigned to all internal 
nodes in SAG, we can merge risk values from all predecessors to 
obtain the cumulative risk probabilityor absolute risk probability 
for each node according to (5) and (6). Based on derived 
conditional probability assignments on each node, we can then 
derive an effective security hardening plan or a mitigation 
strategy: 
 
• for any attack-step node n ∈NC with immediate predecessor set 
W = parent(n), 
Pr(n) = Pr(n|W) *s∈W 
Pr(s); (5) 
• for any privilege node n ∈ND with immediate 
predecessor set W = parent(n), 
Pr(n) = 1 −s∈W 
(1 − Pr(s)).(6) 
 
Mitigation Strategies 
Based on the security metrics defined in the previoussubsection, 
NICE is able to construct the mitigation strategies in response to 
detected alerts. First, we define the term countermeasure pool as 
follows: 
Definition (Countermeasure Pool).A countermeasurepool 
CM = {cm1, cm2, . . . ,cmn} is a set of countermeasures. Each cm ∈CM is a tuple cm = (cost, intrusiveness, condition, 
effectiveness), where 
1. cost is the unit that describes the expenses required to apply the 

countermeasure in terms of resources and operational 
complexity, and it is defined in a range from 1 to 5, and 
higher metric means higher cost; 

2. intrusiveness is the negative effect that a countermeasure brings 
to the Service Level Agreement (SLA) and its value ranges 
from the least intrusive (1) to the most intrusive (5), and the 
value of intrusiveness is 0 if the countermeasure has no 
impacts on the SLA; 

3. condition is the requirement for the corresponding 
countermeasure; 

4. effectiveness is the percentage of probability changes of the 
node, for which this countermeasure is applied. In general, 
there are many countermeasures that can be applied to the 
cloud virtual networking system depending on available 
countermeasure techniques that can be applied. Without 
losing the generality, several common virtual-networking-
based countermeasures are listed in table 1. The optimal 
countermeasure selection is a multi-objective optimization 
problem, to calculate MIN(impact, cost) and MAX(benefit). 
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In NICE, the network reconfiguration strategies mainly 
involve two levels of action: layer-2 and layer- 

3. At layer-2, virtual bridges (including tunnels that can be 
established between two bridges) and VLANs  

Main component in cloud’s virtual networking system toconnect 
two VMs directly. A virtual bridge is an entity that attaches 
Virtual Interfaces (VIFs). Virtual machines on different bridges 
are isolated at layer 2. VIFs on the same virtual bridge but with 
different VLAN tags cannot communicate to each other directly. 
Based on this layer-2 isolation, NICE can deploy layer-2 network 
reconfiguration to isolate suspicious VMs. For example, 
vulnerabilities due to Arpspoofing [30] attacks are not possible 
when the suspicious VM is isolated to a different bridge. As a 
result, this countermeasure disconnects an attack path in the attack 
graph causing the attacker to explore an alternate attack path. 
Layer-3 reconfiguration is another way to disconnect an attack 
path. Through the network controller, the flow table on each OVS 
or OFS can be modified to change the network topology. 
We must note that using the virtual network 
reconfigurationapproach at lower layer has the advantage in that 
upper layer applications will experience minimal impact. 
Especially, this approach is only possible when using software-
switching approach to automate the reconfiguration in a highly 
dynamic networking environment. Countermeasures such as 
traffic isolation can be implemented by utilizing the traffic 
engineering capabilities of OVS and OFS to restrict the capacity 
and reconfigure the virtual network for a suspicious flow. When a 
suspicious activity such as network and port scanning is detected 
in the cloud system, it is important 
to determine whether the detected activity is indeed malicious or 
not. For example, attackers can purposely hide their scanning 
behavior to prevent the NIDS from identifying their actions. In 
such situation, changing the network configuration will force the 
attacker to perform more explorations, and in turn will make their 
attacking behavior stand out. 
Countermeasure selection 
Algorithm 2 presents how to select the optimal countermeasure 
for a given attack scenario. Input to the algorithm is an alert, 
attack graph G, and a pool of countermeasures CM. The algorithm 
starts by selecting the node vAlert that corresponds to the alert 
generated by a NICE-A. Before selecting the countermeasure, 
wecount the distance of vAlert to the target node. If the distance is 
greater than a threshold value, we do not perform countermeasure 
selection but update the ACG to keep track of alerts in the system 
(line 3). For the source node vAlert, all the reachable nodes 
(including the source node) are collected into a set T (line 6). 
Because the alert is generated only after the attacker has 
performed the action, we set the probability of vAlertto 1 and 
calculate the new probabilities for all of its child (downstream) 
nodes in the set T (line 7 & 8). Now for all t ∈T the applicable 
countermeasures in CM are selected and new probabilities are 
calculated according to theeffectiveness of the selected 
countermeasures (line 13 &14). The change in probability of 
target node gives the benefit for the applied countermeasure using 
(7). In the next double for-loop, we compute the Return of 
Investment (ROI) for each benefit of the applied countermeasure 
based on (8). The countermeasure which when applied on a node 
gives the least value of ROI, is regarded as the optimal 
countermeasure. Finally, SAG and ACG are also updated before 
terminating the algorithm. The complexity of Algorithm 2 is O(|V 
| × |CM|) where |V |is the number of vulnerabilities and |CM| 
represents the number of countermeasures. 
 
Algorithm 2 Countermeasure Selection 
Require: Alert,G(E, V ), CM 
1: Let vAlert= Source node of the Alert 
2: if Distance to Target(vAlert) > threshold then 

3: Update ACG 
4: return 
5: end if 
6: Let T = Descendant(vAlert) ∪vAlert 
7: Set Pr(vAlert) = 1 
8: Calculate Risk Prob(T) 
9: Let benefit[|T|, |CM|] = ∅ 
10: for each t ∈T do 
11: for each cm ∈CM do 
12: if cm.condition(t) then 
13: Pr(t) = Pr(t) ∗(1 − cm.effectiveness) 
14: Calculate Risk Prob(Descendant(t)) 
15:benefit[t, cm] = ΔPr(target node). (7) 
16: end if 
17: end for 
18: end for 
19: Let ROI[|T|, |CM|] = ∅ 
20: for each t ∈T do 
21: for each cm ∈CM do 
22: 
ROI[t, cm] = 
benefit[t, cm] 
cost.cm + intrusiveness.cm. (8) 
23: end for 
24: end for 
25: Update SAG and Update ACG 
26: return Select Optimal CM(ROI) 

 
 

VII.PERFORMANCE EVALUATION 
In this section we present the performance evaluation ofNICE. 
Our evaluation is conducted in two directions: the security 
performance, and the system computing and network 
reconfiguration overhead due to introduced security mechanism. 
Security Performance Analysis 
To demonstrate the security performance of NICE, wecreated a 
virtual network testing environment consisting of all the presented 
components of NICE. 
Environment and Configuration 
To evaluate the security performance, a demonstrative virtual 
cloud system consisting of public (public virtual servers) and 
private (VMs) virtual domains is established as shown in Figure 3. 
Cloud Servers 1 and 2 are connected to Internet through the 
external firewall. In the Demilitarized Zone (DMZ) on Server 1, 
there is one Mail server, one DNS server and one Web server. 
Public network on Server 2 houses SQL server and NAT Gateway 
Server. Remote access to VMs in the private network is controlled 
through SSHD (i.e., SSH Daemon) from the NAT Gateway 
Server. Table 2 shows the vulnerabilities present in this network 
and table 3 shows the corresponding network connectivity that 
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can be explored based on the identified vulnerabilities. Attack 
Graph and Alert CorrelationThe attack graph can be generated by 
utilizing network topology and the vulnerability information, and 
it is shown in Figure 4. As the attack progresses, the system 
generates various alerts that can be related to the nodes in the 
attack graph. 
Creating an attack graph requires knowledge of network 
connectivity, running services and their vulnerability information. 
This information is provided to the attack graph generator as the 
input. Whenever a new vulnerability is discovered or there are 
changes in the network connectivity and services running through 
them, the updated information is provided to attack graph 
generator and old attack graph is updated to a new one. SAG 
provides information about the possible paths that an attacker can 
follow. ACG serves the purpose of confirming attackers’ behavior, 
and helps in determining false positive and false negative. ACG 
can also be helpful in predicting attackers’ next steps. 
Countermeasure Selection 
To illustrate how NICE works, let us consider for example,an alert 
is generated for node 16 (vAlert= 16) when the system detects 
LICQ Buffer overflow. After the alert is generated, the cumulative 
probability of node 16 becomes 1 because that attacker has 
already compromised that node. This triggers a change in 
cumulative probabilities of child nodes of node 16. Now the next 
step is to select the countermeasures from the pool of 
countermeasures CM. If the countermeasure CM4: create filtering 
rules is applied to node 5 and we assume that this countermeasure 
has effectiveness of85%, the probability of node 5 will change to 
0.1164, which causes change in probability values of all child 
nodes of node 5 thereby accumulating to a decrease of 28.5% for 
the target node 1. Following the same approach for all possible 
countermeasures that can be applied, the percentage change in the 
cumulative probability of node 1, i.e., benefit computed using (7) 
are shown in Figure 5. Apart from calculating the benefit 
measurements, we also present the evaluation based on Return of 
Investment(ROI) using (8) and represent a comprehensive 
evaluation considering benefit, cost and intrusiveness of 
countermeasure. Figure 6 shows the ROI evaluations for presented 
countermeasures. Results show that countermeasures CM2 
andCM8 on node 5 have the maximum benefit evaluation, 
however their cost and intrusiveness scores indicate that they 
might not be good candidates for the optimal countermeasure and 
ROI evaluation results confirm this. The ROI evaluations 
demonstrate that CM4 on node 5 is the optimal solution. 
 

VIII.CONCLUSION AND FUTURE WORK 
In this paper, we presented NICE, which is proposed to detect and 
mitigate collaborative attacks in the cloud virtual networking 
environment. NICE utilizes the attack graph model to conduct 
attack detection and prediction. The proposed solution 
investigates how to use the programmability of software switches 
based solutions to improve the detection accuracy and defeat 
victim exploitation phases of collaborative attacks. The system 
performance evaluation demonstrates the feasibility of NICE and 
shows that the proposed solution can significantly reduce the risk 
of the cloud system from being exploited and abused by internal 
and external attackers. NICE only investigates the network IDS 
approach to counter zombie explorative attacks. In order to 
improve the detection accuracy, host-based IDS solutions are 
needed to be incorporated and to cover the whole spectrum of IDS 
in the cloud system. This should be investigated in the future 
work. Additionally, as indicated in the paper, we will investigate 
the scalability of the proposed NICE solution by investigating the 
decentralized network control and attack analysis model based on 
current study. 
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